نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری باستان‌شناسی دانشگاه تهران، تهران، ایران

2 دانشیار گروه ژنتیک پزشکی دانشگاه تربیت مدرس، تهران

3 استادیار گروه ژنتیک دانشگاه علوم پزشکی زاهدان، زاهدان

4 استادیار گروه زیست‌شناسی- ژنتیک دانشگاه آزاد اسلامی، واحد ورامین پیشوا

5 استادیار گروه رادیولوژی دانشکده دندانپزشکی دانشگاه علوم پزشکی تهران

6 دانش‌آموخته‌ی کارشناسی ارشد گروه زیست‌شناسی- ژنتیک دانشکده علوم پایه دانشگاه آزاد، واحد علوم تحقیقات، تهران

چکیده

علم نوپای ژنتیک باستان‌شناسی (Archaeogenetics) که بر پایه‌ی آمیزه‌ی علوم ژنتیک و باستان‌شناسی است، پتانسیل بسیار بالایی در کشف حقایق و ناگفته­های فرهنگی و معیشتی دوران باستان از قبیل منشأ انسان مدرن و سیر تکاملی آن، چگونگی مهاجرت و توزیع جغرافیایی آن در پنج قاره جهان و همچنین بررسی تنوع ژنتیکی نمونه­های DNA باستانی در نقاط مختلف جهان و مقایسه‌ی تحلیلی آن با جمعیت انسان امروزی دارد. مناطق بسیار پلی‌مورفیک DNA هسته­ای مانند مارکرهای STR کروموزوم Y و مناطق بسیار متغیر DNA میتوکندریایی (mtDNA) برای بررسی تنوع ژنتیکی نمونه­های باستانی استفاده  می­شود. در پژوهش حاضر DNA باستانی از تعدادی از نمونه‌های استخوانی و دندان انسانی استخراج شد. نمونه­ها از حفاری منطقه هفت‌تپه متعلق به دوره‌ی ایلام میانی به‌دست آمد. سپس مناطق HVI و HVII مولکول mtDNA، با استفاده از روش PCR تکثیر و در ادامه تعیین توالی شد. توالی­ها با توالی مرجع مقایسه و هاپلوگروپ این اقوام R2 و R5 تعیین شد. با ردیابی این هاپلوگروپ‌ها از مناطق آریانشین مشخص شد که منشأ هاپلوگروپ R2جنوب غربی ایلام و تمدن ایلام است. 

کلیدواژه‌ها

عنوان مقاله [English]

Sequencing Mitochondrial DNA of Middle Elamite Skeletal Remains from HAFT TEPE

نویسندگان [English]

  • Maryam Ramezani 1
  • Mohammad Taghi Akbari 2
  • Mostafa Montazer Zohouri 3
  • Shohre Zare 4
  • Mahdi Niknami 5
  • Naghme Lesani 6

1 Ph. D Candidate, Department of Archaeology, University of Tehran

2 Associate Professor, Department of Genetics, University of Tarbiat Modares

3 Assistant Professor, Department of Genetics, Zahedan University of Medical Sciences

4 Assistant Professor, Department of GeneticAssistant Professor, Department of Genetics, Islamic Azad University, Waramins, Islamic Azad University, Waramin

5 Assistant Professor, Department of Radiology, University of Tehran Medical Science

6 MA in Genetics, Department of Genetics, Islamic Azad University, Science and Research

چکیده [English]

Archaeogenetics, a nascent and emerging science, is based on a combination of biology and genetics which has a high potential in discovering the untold facts about livelihood and culture of ancient times, such as modern human origins and diets evolutionary trend. This area of biology, also focus on migration and geographical distribution of humans and genetic variation in ancient DNA samples around the world in comparison to modern humans. Highly polymorphic DNA regions like STR found on the male-specific Y chromosome in nucleus and mitochondrial (mt) DNA are used in archaeogenetics to study genetic variation within a target population. mtDNA D-loop region is very polymorphic that consists of two hyper variable regions including HVI and HVII with a large variety in different human populations. Analysis on these regions of mtDNA using ancient excavated human bones will lead to determine the genetic composition of human mtDNA known as haplogroups. mtDNA can be used to identify the ancient ethnic groups, trace descendants of ancestors and their migration trails.This is achieved by comparing mtDNA haplogroups between different ethnic groups all over the world.In this study, we have performed analysis using ancient DNA extracted from 5 excavated human bones. Ancient human bones were obtained from Haft-Tepe. We performed PCR amplifications for HVI and HVII regions of the mtDNA followed by sequencing with ABI. Then comparisons The Cambridge Reference Sequence and the sequences obtained in the current study were done at NCBI site. Hoplogroup residents were R2 and R5. By tracking haplogroups from indo-Iranian , we can conclude that these haplogroups dated to 5000 B.P in Iran, and possibly originated in southwestern Iran and from the Elamite civilization.

کلیدواژه‌ها [English]

  • Archaeognetics
  • Elamite empire
  • sequencing
  • Hypervariable region1 and 2
  • mtDNA
لسانی، نغمه؛ اکبری، محمدتقی؛ زارع کاریزی، شهره  (1393)، «هاپلوگروپ‌های ژنوم میتوکندری در یک جمعیت از قوم کرد ایرانی: ابزاری در تشخیص افراد مجهول‌الهویه»، طب انتظامی، دوره 2 شماره 2، صفحات 67-74.
مفیدی نصرآبادی، بهزاد (1394)، «گزارش مقدماتی حفاری‌های محوطه باستانی هفت‌تپه 1390 تا 1391 شمسی، الامیکا 5، صص 196-199.
 Adachi, J. and M. Hasegawa 1995. Improved dating of the human/chimpanzee separation in the mitochondrial DNA tree: heterogeneity among amino acid sites, Journal of Molecular Evolution 40 (6): 622-628.
Al‐Abri, A., E. Podgorná, J. I. Rose, L. Pereira, C. J. Mulligan, N. M. Silva, R. Bayoumi, P. Soares and V. Černý 2012. Pleistocene‐Holocene boundary in Southern Arabia from the perspective of human mtDNA variation, American Journal of Physical Anthropology 149 (2): 291-298.
Anderson, S., A. T. Bankier, B. G. Barrell, M. H. de Bruijn, A. R. Coulson, J. Drouin, I. C. Eperon, D. P. Nierlich, B. A. Roe and F. Sanger 1981, Sequence and organization of the human mitochondrial genome, Nature 290 (5806): 457.
Aris-Brosou, S. and L. Excoffier 1996. The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism, Molecular Biology and Evolution 13 (3): 494-504.
Avise, J. C., J. Arnold, R. M. Ball, E. Bermingham, T. Lamb, J. E. Neigel, C. A. Reeb and N. C. Saunders 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics, Annual Review of Ecology and Systematics 18(1): 489-522.
Budowle, B., M. W. Allard and M. R. Wilson 2002. Critique of interpretation of high levels of heteroplasmy in the human mitochondrial DNA hypervariable region I from hair, Forensic Science International 126(1): 30-33.
Budowle, B., J. A. DiZinno and M. R. Wilson 1999. Interpretation guidelines for mitochondrial DNA sequencing, Tenth International Symposium on Human Identification.
Cann, R. L., W. M. Brown and A. C. Wilson 1984. Polymorphic sites and the mechanism of evolution in human mitochondrial DNA, Genetics 106(3): 479-499.
Cann, R. L., M. Stoneking and A. C. Wilson 1987. Mitochondrial DNA and human evolution,Nature 325(6099): 31-36.
Derenko, M., B. Malyarchuk, A. Bahmanimehr, G. Denisova, M. Perkova, S. Farjadian and L. Yepiskoposyan 2013. Complete mitochondrial DNA diversity in Iranians, PloS one 8(11): e80673.
Forster, P., R. Harding, A. Torroni and H.-J. Bandelt 1996. Origin and evolution of Native American mtDNA variation: a reappraisal, American Journal of Human Genetics 59(4): 935.
Grugni, V., V. Battaglia, B. H. Kashani, S. Parolo, N. Al-Zahery, A. Achilli, A. Olivieri, F. Gandini, M. Houshmand and M. H. Sanati 2012. Ancient migratory events in the Middle East: new clues from the Y-chromosome variation of modern Iranians, PloS one 7(7): e41252.
Hagelberg, E., N. Goldman, P. Lio, S. Whelan, W. Schiefenhöel, J. Clegg and D. Bowden 1999. Evidence for mitochondrial DNA recombination in a human population of island Melanesia, Proceedings of the Royal Society of London B: Biological Sciences 266(1418): 485-492.
Hagelberg, E., B. Sykes and R. Hedges 1989. Ancient bone DNA amplified, Nature 342(6249): 485.
Handt, O., S. Meyer and A. von Haeseler 1998, Compilation of human mtDNA control region sequences, Nucleic Acids Research 26(1): 126-129.
Helgason, A., S. Sigurðardóttir, J. Gulcher, K. Stefansson and R. Ward 2000. Sampling saturation and the European mtDNA pool: implications for detecting genetic relationships among populations, archaeogenetics: DNA and the population prehistory of Europe, McDonald Institute for Archaeological Research, Cambridge pp. 285-294.
Higuchi, R., B. Bowman, M. Freiberger, O. A. Ryder and A. C. Wilson 1984. DNA sequences from the quagga, an extinct member of the horse family, Nature 312(5991): 282.
Karmin, M. 2005. Human mitochondrial DNA haplogroup R in India: dissecting the phylogenetic tree of South Asian-specific lineages, M.Sc. Thesis, Department of Evolutionary Biology, University of Tartu.
Kim, K. I., J. H. Lee, K. Li, Y. P. Zhang, S. S. Lee, J. Gongora and C. Moran 2002. Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D‐loop sequence polymorphism, Animal Genetics 33(1): 19-25.
King, M.-C. and A. C. Wilson 1975. Evolution at two levels in humans and chimpanzees, Science 188(4184): 107-116.
Koji Lum, J. and R. L. Cann 2000. mtDNA lineage analyses: origins and migrations of Micronesians and Polynesians, American Journal of Physical Anthropology 113(2): 151-168.
Lutz, S., H.-J. Weisser, J. Heizmann and S. Pollak 1996. mtDNA as a tool for identification of human remains, International Journal of Legal Medicine 109(4): 205-209.
Lutz, S., H.-J. Weisser, J. Heizmann and S. Pollak 2000. Mitochondrial heteroplasmy among maternally related individuals, International Journal of Legal Medicine 113(3): 155-161.
Lutz, S., H. Wittig, H.-J. Weisser, J. Heizmann, A. Junge, N. Dimo-Simonin, W. Parson, J. Edelmann, K. Anslinger and S. Jung 2000. Is it possible to differentiate mtDNA by means of HVIII in samples that cannot be distinguished by sequencing the HVI and HVII regions?" Forensic Science International 113(1-3): 97-101.
Malyarchuk, B. and M. Derenko 2001. Mutational hotspots and hypervariable nucleotide motifs in the non-coding human mtDNA control region. American Journal of Human Genetics, 4(69):391-391.
Matthee, C. A. and S. K. Davis 2001. Molecular insights into the evolution of the family Bovidae: a nuclear DNA perspective, Molecular Biology and Evolution 18(7): 1220-1230.
Meyer, S., G. Weiss and A. von Haeseler 1999. Pattern of nucleotide substitution and rate heterogeneity in the hypervariable regions I and II of human mtDNA, Genetics 152(3): 1103-1110.
Parsons, T. J., D. S. Muniec, K. Sullivan, N. Woodyatt, R. Alliston-Greiner, M. R. Wilson, D. L. Berry, K. A. Holland, V. W. Weedn and P. Gill 1997. A high observed substitution rate in the human mitochondrial DNA control region, Nature Genetics 15(4): 363.
Richards, M. B., B. C. Sykes and R. E. Hedges 1995. Authenticating DNA extracted from ancient skeletal remains, Journal of Archaeological Science 22(2): 291-299.
Röhl, A., B. Brinkmann, L. Forster and P. Forster 2001. An annotated mtDNA database, International Journal of Legal Medicine 115(1): 29-39.
Salas, A., V. Lareu, F. Calafell, J. Bertranpetit and A. Carracedo 2000. mtDNA hypervariable region II (HVII) sequences in human evolution studies, European Journal of Human Genetics 8(12): 964.
Soares, P., L. Ermini, N. Thomson, M. Mormina, T. Rito, A. Röhl, A. Salas, S. Oppenheimer, V. Macaulay and M. B. Richards 2009. Correcting for purifying selection: an improved human mitochondrial molecular clock, American Journal of Human Genetics 84(6): 740-759.
Stoneking, M., D. Hedgecock, R. G. Higuchi, L. Vigilant and H. A., Erlich 1991. Population variation of human mtDNA control region sequences detected by enzymatic amplification and sequence-specific oligonucleotide probes, American Journal of Human Genetics 48(2): 370.
Stringer, C. B. and P. Andrews 1988. Genetic and fossil evidence for the origin of modern humans, Science 239(4845): 1263-1268.
Sykes, B., A. Leiboff, J. Low-Beer, S. Tetzner and M. Richards 1995. The origins of the Polynesians: an interpretation from mitochondrial lineage analysis, American Journal of Human Genetics 57(6): 1463.
Vigilant, L., M. Stoneking, H. Harpending, K. Hawkes and A. C. Wilson 1991a. African populations and the evolution of human mitochondrial DNA, Science 253(5027): 1503-1507.
Vigilant, L., Wilson, A., and H., Harpending 1991b. Evolution of human mitochondrial DNA in African population, American Journal of Human Genetics, 253:1503-1507.
Wilkinson-Herbots, H., M. B. Richards, P. Forster and B. Sykes 1996. Site 73 in hypervariable region II of the human mitochondrial genome and the origin of European populations, Annals of Human Genetics 60(6): 499-508.