Document Type : Research Paper


1 دانش‌آموخته‌ی دکتری مرمت اشیای تاریخی- فرهنگی، دانشگاه هنر اصفهان

2 دانش‌آموخته‌ی کارشناسی ارشد مرمت اشیای تاریخی- فرهنگی، دانشگاه آزاد اسلامی واحد یزد

3 Assistant Professor, Department of Conservation and Restoration, Islamic Azad University of Yazd


Investigation and evaluation of historical object's properties and their components with respect to structural, technical and pathological point of view through nondestructive testing (NDT), is one of the most important research field in archaeometry. In this paper, the qualitative and quantitative result of chemical composition of glaze (case study: multicolored tile, probably from Safavied era) is presented through X-ray microprobe analysis (XPMA) and without sampling. Results of this analysis demonstrate the possibility of recognition of major, minor and trace elements in glaze and their amounts, through fast, nondestructive, accurate and facile method. The data obtained from this analysis point to that these glazes can classified in lead glaze group and calcium oxide has flux role in the composition. Colorants such as turquoise blue (copper oxide), yellow (with the presence of iron oxide in the vicinity of calcium oxide) and bright green (chromium oxide), indicate that firing atmosphere of glaze was oxidation environment. Also, characterization of mineralogical and chemical composition of this sample was carried out through elemental, phases and thermal analysis (XRF, XRD, and STA) and petrography. The results indicate that firing temperature of tile body has been 800 – 850℃ in oxidation condition.


امامی، سید محمدامین؛ سیمین آریانسب‌؛ حسین احمدی؛ عسگری علیرضا چاوردی؛ کالیری پیرفرانچسکو (1393)،    «روش­های باستان­سنجی به‌منظور ساختارشناسی آجرهای کشف شده از تل آجری تخت‌جمشید»، مطالعات باستان­شناسی، 6 (2)، صص 1-19.
امامی، سید محمدامین؛ سمیه نوغانی (1392)، «بررسی روند کربناتیزاسیون مجدد و شکل‌گیری کلسیت ثانویه در سفال‌های باستانی بر اساس مطالعات پتروگرافیک»، مرمت و معماری ایران، 3 (5)، صص 55-67.
فرتاج، وجیهه (1391). «بررسی تأثیر اثر خودجذبی در پارامترهای پلاسمایی در پلاسمای القایی لیزری»، پایان­نامه کارشناسی ارشد در رشته فیزیک، استاد راهنما: سیده زهرا شورشینی، دانشکده علوم پایه، دانشگاه الزهرا.
Adriaens, A. 2005. Non-destructive analysis and testing of museum objects: An overview of 5 years of research. Spectrochimica Acta Part B 60:1503 – 1516.
Cardiano, P., Ioppolo, S., Stefano, C., Pettignano, A., Sergi, S. and Piraino, P., 2004. Study and characterization of the ancient bricks of monastery of “San Filippo di Fragalà” in Frazzanò (Sicily). Analytica Chimica Acta 519:103–111.
Cheng, H. S., Zhang, Z. Q., Xia, H. N., Jiang, J. C., and Yang, F. J., 2002. Non-destructive analysis and appraisal of ancient Chinese porcelain by PIXE, Nuclear Instruments and Methods in Physics Research B 190:488–491.
Cheng, L., Ding, X., Liu, Z., Pan, Q., and Chu, X., 2007. Development of a micro-X-ray fluorescence system based on polycapillary X-ray optics for non-destructive analysis of archaeological objects, Spectrochimica Acta Part B 62:817–823.
Cheng, L., Li, Ro., Pan, Q., Li, G., Zhao, W., and Liu, Z., 2009. Analysis of elemental maps from glaze to body of ancient Chinese Jun and Ru porcelain by micro-X-ray fluorescence, Nuclear Instruments and Methods in Physics Research B 267:117–120.
Colao, F., Fantoni, R., Lazic, V., and Spizzichino, V., 2002. Laser-induced breakdown spectroscopy for semi-quantitative and quantitative analyses of artworks—application on multi-layered ceramics and copper based alloys. Spectrochimica Acta Part B 57:1219–1234.
Colomban, P., 2004. Raman spectrometry, a unique tool to analyze and classify ancient ceramica and glasses, Applied Physics A: Materials Science & Processing 79:167-170.
Ferguson, J. R., Keuren, S., and Bender, S., 2015. Rapid qualitative compositional analysis of ceramic paints, Journal of Archaeological Science Reports 3:321-327.
Gajić-Kvaščev, M. D., Marić-Stojanović, M, Jančić-Heinemann, R. M., Kvaščev, G. S., and Velibor D., 2012. Non-destructive characterisation and classification of ceramic artefacts using pEDXRF and statistical pattern recognition, Chemistry Central Journal 6 (102).
Janssens, K., and Grieken, R. Van. 2004. Introduction and overview, in: K., Janssens and R., Van Grieken (eds.), Comprehensive analytical chemistry,. Elsevier.
Janssens, K., Vittiglio, G., Deraedt, I., Aerts, A., Vekemans, B., Vincze, L., Wei, F., Deryck, I., Schalm, O., Adams, F., Rindby, A., Knochel, A., Simionovici, A., and Snigirev, A., 2000. Use of microscopic XRF for non-destructive analysis in art and archaeometry, X-Ray Spectrometry 29:73–91.
Kim, J., and Liaw, P. K. 1998. The nondestructive evaluation of advanced ceramics and ceramic-matrix composites, JOM 50 (11).
Llovet, X., 2012. Electron probe microanalysis: principles and applications.
Ma, H., Henderson, J., and Evans, J., 2014. The exploration of Sr isotopic analysis applied to Chinese glazes: part one, Journal of Archaeological Science 50:551-558.
Madkour, F., Imam, H., Elsayed, K., and Meheina, G., 2015. Elemental analysis study of glazes and ceramic bodies from Mamluk and Ottoman periods in Egypt by Laser-Induced Breakdown Spectroscopy (LIBS), Periodico di Mineralogia 84 (1): 107-121.
Melessanaki, K., Mateo, M. P., Ferrence, S. C., Betancourt, P. P., and Anglos, D., 2002. The application of LIBS for the analysis of archaeological ceramics and metal artifacts, Applied Surface Science 197-198:156-163.
Naseerutheen, A., Chandrasekaran, A., Rajalakshmi, A., and Ravisankar, R., 2014. Elemental analysis of ancient potteries of Vellore Dist, Tamil Nadu, India by ED-XRF technique with statistical approach, Beni-Suef University, Journal of Basic and Applied Sciences 3 (1):45–51.
Papadopoulou, D. N., Zachariadis, G. A., Anthemidis, A. N., Tsirliganis, N. C., and Stratis, J. A., 2004. Comparison of a portable micro-X-ray fluorescence spectrometry with inductively coupled plasma atomic emission spectrometry for the ancient ceramics analysis, Spectrochimica Acta Part B 59:1877– 1884.
Papadopoulou, D. N., Zachariadis, G. A., Anthemidis, A. N., Tsirliganis, N. C., and Stratis, J. A., 2006. Development and optimisation of a portable micro-XRF method for in situ multi-element analysis of ancient ceramics, Talanta 68 1692–1699.
Pillay, A. E., 2001. Analysis of archaeological artefacs: PIXE, XRF or ICP-MS? Journal of Radioanalytical and Nuclear Chemistry 247 (3):593- 595.
Pollard, M., Batt, C., Stern, B., and Young, S. M. M, 2007. Analytical chemistry in archaeology. UK, Cambridge University Press.
Romano, F. P., Pappalardo, G., Pappalardo, L., Garraffo, S., Gigli, R., and Pautasso1, A., 2006. Quantitative non-destructive determination of trace elements in archaeological pottery using a portable beam stability-controlled XRF spectrometer, X-Ray Spectrometry 35: 1–7.
Simsek, G., Colomban, Ph., Casadio, F., Bellot-Gurlet, L., Zelleke, G., Faber, K.T., Milande, V., and Tilliard, L., 2015. On-site identification of early Böttger red stoneware using portable XRF/Raman instruments: 2, glaze & gilding analysis, Journal of the American Ceramic Society 98 (10).
Tsolakidou, A., and Kilikoglou, V., 2002. Comparative analysis of ancient ceramics by neutron activation analysis, inductively coupled plasma-optical-emission spectrometry, inductively coupled plasma-mass spectrometry, and X-ray fluorescence, Anal. Bioanal. Chem. 374 (3):566-572.