Formation, Development and Evolutions in Metallurgy of Copper and its Alloys during the Prehistoric Period of Iran: From Copper Usage to Evidences of Brass

Omid Oudbashi (139-166)

The Iranian Plateau and its residents can be enumerated as one of the pioneers in progress of technology, science and knowledge in the ancient world. The development of metallurgy on the Iranian Plateau has been a topic of interest to both archaeologists and scientists for many years because of the remarkable history of the metallurgical activities in this region and concerned the wide variety of the technologies, compositions, innovations, etc. (Figure 1). Results of many investigations in metallurgy of ancient Iranian Plateau show usage of copper and its alloys in different periods of Iran history from prehistoric to Islamic era. In this paper, formation, evolutions and developments occurred in metallurgy of copper alloys have reviewed and in prehistoric period of Iran (7000-500 BC) based on archaeological and archaeometallurgical investigations. The results of analytical and archaeological studies state the first metal used in prehistory of Iranian Plateau has been copper. It is apparent that the Iranian Plateau has a significant history in the metallurgy of copper and its alloys in the prehistoric period. It has begun in the Neolithic period and during 4000 years has transformed from forming objects by hammering native copper to extensive smelting of oxidic and sulphidic ores in Chalcolithic era. The ancient metalworkers used native copper to manufacture small decorative objects, as it was observed in Ali Kosh Neolithic site (Figure 2). It was developed by shaping native copper to produce small functional objects such as objects discovered from late Neolithic sites (Figure 2). It was continued by melting native copper to cast objects. Furthermore, metallurgical processes were extended by smelting copper oxidic ores in crucibles during 5th and 4th millennium BC. In fact, the chalcolithic period (ca. 4500-3000 BC) is the period of emergence and development of smelting of oxidic and then sulphidic copper ores in small scale. There are numerous evidences of copper smelting in the chalcolithic archaeological sites such as Qabristan, Tal-i Iblis, etc. showing the crucible smelting technology in different regions of the Iranian Plateau (Figure 3). This technology was developed by large-scale smelting of copper ores, as it was discovered in Arisman, near Kashan. Of course, the metallurgical technologies during the late chalcolithic period (ca. 3500-3000 BC), is a mixture of crucible smelting and furnace smelting (Figure 4). It is worth noting that the main metallic composition in the Chalcolithic period is arsenical copper that may has been produced accidentally by smelting As-bearing copper ores leading to obtain metallic copper with significant amounts of arsenic (Figure 5). Nevertheless, some evidences of intentional arsenical copper production have been found during late Chalcolithic and early Bronze Age archaeological sites, such as Arisman. The third millennium BC was occurred with occurrence of a new alloy, tin bronze. Early evidences of this technology was observed in western Iran, Luristan at the beginning of the third millennium BC. Some tin bronze objects with significant amounts of tin were detected among
copper and arsenical copper objects discovered from Early Bronze Age graveyards such as Kalleh Nisar and Bani Surmeh (Figure 6). Although, early evidences of tin bronze metallurgy have been occurred in the third millennium BC but this technology was limited for about 1000 years in western and south-western Iran. Results of analytical studies revealed that the main copper base metallurgy has been copper and arsenical copper in other regions of the Iranian Plateau during the third millennium BC. Tin bronze was emerged in central Iran during the middle and late Bronze Age (ca. 2500-1500 BC) such as evidences from Malyan (Fars). Therefore, no evidence of tin bronze has been observed in eastern Iran, even at the mid of the second millennium BC. Although tin bronze was occurred during the early Bronze Age and was spread during middle and late Bronze Age in western and central Iran, but it was the main copper-based alloy during the Iron Age of the Iranian Plateau (ca. 1500-550 BC). Results of analytical investigations states that tin bronze has been the main material in production of metallic objects at the whole of the Iranian Plateau. The ritual objects from Iron Age graveyards of western, northern and central Iran show application of tin bronze to produce these objects. The large scale tin bronze production is the Iron Age of Iran is an interesting aspect, as this alloy has been observed in different archaeological sites such as Hasanlu and Marlik (Figure 7). One of the important collections form this category are the Luristan Bronzes, the enigmatic and extraordinary metallic objects that were produced in high-quality craftsmanship and were placed in graves and sanctuaries as ritual objects (Figure 8). The results of chemical analysis on the Luristan Bronzes, as well as other tin bronze objects from Iran, shows that they may have been produced by uncontrolled alloying methods. In fact, controlling tin content has not been an important case for ancient metalworkers during the Iron Age (and also the Bronze Age). Also, no correlation between tin content and object’s typology is visible in the tin bronze objects from prehistoric Iran, that is in contrast with accent cuneiform texts from Mesopotamia. It may show that tin bronze metallurgy in the Iranian Plateau may has not been in connection with the Mesopotamian technology. Although, evidences of copper-zinc objects have been observed among the other copper based artefacts from second and first millennium BC, but it can’t be stated that this material has been used as a deliberately produced metallurgical product. It is more probable that these limited examples of copper-zinc objects (probably brass) were produced by smelting Zn-bearing copper ores. Nevertheless, evidences of low-zinc objects from Tappeh Yahya (southern Iran) and Luristan shows occurrence of early brasses (probable accidentally) during the prehistoric Iran.

Results of numerous analytical studies on the prehistoric copper base metallurgy during the last decades revealed interesting aspects of this technology from about 8000 BC. It has been started by using native copper and then developed by smelting oxidic and sulphidic copper in crucibles during the Neolithic and Chalcolithic periods. Large scale smelting sites also were occurred during the late chalcolithic and early Bronze Age. Furthermore, application of different copper alloys such as arsenical copper, tin bronze and brass from Chalcolithic to Iron Age are important developments in archaeometallurgy in Iran. Totally, process of formation and development of copper metallurgy in prehistoric Iran has been introduced and revised based on technical and archaeological finds belonging a period about 6500 years (Figure 9).

Keywords: Iran, Archaeometallurgy, Native Copper, Smelting, Arsenical copper, Tin Bronze, Brass
شکل گیری، توسیع و تحولات فلزگری مس و آلبازهای آن در دوران پیش از تاریخ فلات ایران: از
په‌کارگیری مس تا شاخص تولید برنج

چکیده
فلزگری باستانی در ایران همواره فن و سنتی در حال تحویل بوده و ابزارها و ابزارهایای که در این حدود گذشته به جنیه‌های فنی و هنری کاربردی مانند فلز و جالب توجه است. در این مقاله تلاش شده تا اثبات بررسی و تحقیقات در فلزگری پیش از تاریخ مس در فلات ایران بر اساس بنام‌های باستانی‌نشینی و مطالعات باستان‌شناسی و مطالعات فلزگری کهن (آرکومتاولوژی) مورد مطالعه و تحلیل قرار گیرند. در این مقاله تلاش می‌شود تا اثباتی بررسی و تحقیقات در فلزگری پیش از تاریخ مس و آلبازهای آن در حدود 6500 سال (برز حدود 7000 قمری) مورد مطالعه و باستان‌شناسی قرار گیرند. نتایج مطالعات فلزگری و انواع فلزگری در ایران مبنایی به این فلز مورد استفاده، مس بوده است. روند استفاده از ان فلز از دوره نوسنگی در فلات ایران آغاز شده و در طول چند هزار سال از شکل‌های مس آزاد است. استحصال فلز و آلات باستانی به فلزگری کهن و آلیاژهای آن در ایران بوده است. بر اساس نتایج ایران را می‌توان یکی از تواحیپیش و مهم در شکل‌گیری و توسیع فلزگری آلبازهای مس در دوران پیش از تاریخ دانست.

واژه‌های کلیدی: ایران، فلزگری کهن، مس آزاد، استحصال فلزگری، برنج قلمی، برنج

1. مقدمه
امروزه دانش متالوژی نقش مهمی در صنایع و تولیدات از لوازم روزمره تا پیچیده‌ترین ساخته‌های بشر ایفای می‌کند. سابقه این دانش و ابزار آن را می‌توان یکی از تحولات مهم در شکل‌گیری و توسیع فلزگری و تمدن دانست. اهمیت شکل‌گیری و توسیع دانش فلزگری در دنیای باستان که به فلزگری کهن یا آرکومتاولوژی موسوم است به هدی این که بر تحقیق‌سنجیده دوره‌های فلزگری پیش از تاریخ برق و خش در قرن 19 و 20 میلادی تأثیر زیادی گذاشته است (فاگان، 1374). این امر می‌تواند به دلیل اهمیت فلزات و دانش متالوژی و همچنین نقش اهمیت آن در فلزگری در فلات ایران

در حال حاضر درقاله‌های موضوعی جالب توجه برای باستان‌شناسان و پژوهشگران بوده و دلیل آن نیز گذشته شاخص فعالیت‌های فلزگری در ایران از حدود 7000 سال قمری است (Thornton, 2009a; Pigott, 2004). در حقیقت تاریخ غنی فلات ایران و نیز الگوی گستردگی و متنوع فلزگری از این نگاه به تحقیق‌های فلزگری شاخص‌گذار در نقش مختلف ایران منبع مهمی جهت مطالعات باستان‌شناسی و فلزگری کهن به‌خصوص در سندهای گذشته بوده است. (Arab et al, 2004; Pleiner, 2004; Thornton et al, 2007)

نتایج تحقیقات و تحقیقات در ایران مورد مطالعه و کاوش قرار گرفته‌اند، به‌صورتی که از آنها حاصل‌های مختلف ارزش‌مندی در زمینه فلزگری شاخص‌گذار برای و پژوهشگران، پیشرفت و پیشرفت در ماشین‌سازی در ساخت فلزگری پیش از تاریخ هستند (شکل 1). مانند

مراجع
1. رایانه‌نگار دانشگاه مستند: o.oudbashir@au.ac.ir
فاعالیت‌های انجم شده و تنتاج به دست آمده از تیه‌های کروم (Heskel et al., 1986; Heskel et al., 1980)، تل‌اللبس کرمان (Thornton, 2009b)، تل دامغان (Thornton et al., 2004a) و هفت تپه خوزستان (Oudbashi et al., 2013; Fleming et al., 2005، al., 2009) برنزی ناحیه لرستان (Oudbashi et al., 2009).

مطالعه بر روی بقایای فلزگری در دوره پیش از تاریخ ایران موجب شده تا امروز، بخشی از منظر فعالیت‌های فلزگری در این دوره از تاریخ فلات ایران مشخص گردد. در عین حال، این نتایج پیانگر استفاده‌گسترده از فلزات مختلف در تمامی نقاط فلات ایران به ساختمان وسایل روزمره و تزیین آیینی و تزیینی است. هدف از این مقاله نگاهی بر روی شکل‌گیری، تحولات و تداوم فلزگری مس همدان ایران و تغییرات و تحولات و ابتدای قطعات گرفته در زمینه استفاده از مس و آلیاژهای مختلف آن نیز فن‌های عمده و اصلی استخراج و استحصال فلزات بوده و محدوده زمینی پیش از تاریخ ایران بین حدود ۷۰۰۰ تا ۵۰۰ سال ق.م را دربر می‌گیرد. با توجه به استفاده‌های دیگر فلزات مانند طلا و نقره در کنار مس در این دوره زمینی و گستردگی مطالعات در رابطه با آنها، نهایتاً فلزگری مس و آلیاژهای آن مورد مطالعه قرار گرفته است.

۲. آغاز فلزگری در ایران

۱. Native Copper
با ورود به هزاره ششم ق. م به کارگیری مس آزاد گسترش می‌یابد. شواهدی از استفاده از مس آزاد چیت ساخت ابزار و اشیاء در نواحی مختلف فلات ایران در نیمه اول هزاره ششم ق.م. تهیه می‌شود. (Thornton, 2009a)، و قلب‌های ماهی‌گیری و تهیه آلیاژ‌های ثابت در تپه سیلک کاشان در ایران مرکزی (Pernicka, 2004). موشکی فارس در جنوب ایران (Bernbeck, 2004) و تهیه تکامل در دولت ایران در دوران پیش از تاریخ فلات ایران: از به کارگیری مس تا شواهد تولید برنج.

احتمالاً اولین مرحله متالورژی آذری در ایران، ذوب و ریخته گری مس آزاد بوده است. در واقع این مرحله پیش از استحصال فلز از سنگ معدن رخ داده است (Wertime, 1973). نمونه‌هایی از این سنگ در مس سنگی ابتدا با کاربردهای محدود هستند که در کنار اشیا ساخته‌شده از استخوان، سنگ و دیگر مواد کشف شدند. البته باید خاطر نشان داد که نمونه‌های ذوب‌و‌استحصال معمولاً اشیایی کوچک و کاربردهای محدودی داشته‌اند. ذوب‌مس‌آزاد احتمالاً اولین مرحله متالورژی آذری در ایران بوده است. در واقع این مرحله پیش از استحصال فلز از سنگ معدن رخ داده است (Wertime, 1973).

استفاده از مس در دوره مس سنگی به طور چشمگیری افزایش یافته (Pigott, 1999). نمونه‌های مسی کشف شده در مس سنگی ابتدایی یا انتقالی (5500 تا 5000 ق.م) معمولاً اشیایی کوچک و محدود کاربردی داشته‌اند که در کنار اشیا ساخته‌شده از استخوان، سنگ و دیگر مواد کشف شده‌اند.

ایشیا متنوع موجب شد تا در دوره مس سنگی ابتدایی، اشیا متنوعی از ساخته‌شده در دست ساخت اشیاء متنوع موجب شد که در دوره مس سنگی ابتدایی، اشیاء متنوعی از مس ساخته شوند (Moorey, 1982). به عنوان نمونه اشیاء کشف شده از محوطه‌های مس سنگی ابتدایی ناحیه سیلک (Moorey, 1969) که در هزاره پنجم و اوایل هزاره چهارم میلادی زندگی می‌کردند. یکی از نکات مهم در فلزگری این دوره استحصال مس در تپه حصار، احتمالاً جهت تأمین مواد اولیه در این ناحیه در دست استفاده قرار گرفته است (Pigott et al, 1982). در هزاره چهارم میلادی نیز ساخت اشیاء با استفاده از مس ارسنیکی رواج داشت.

1. Pyrometallurgy
2. Algodonite
3. Enargite
4. Domeykite
استحصال مس از سنگ معدن

مرحله بعدی مالایی از سنگ معدن مس در مرحله پیش از تاریخ ایران: از کارگاه فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ نمونه‌برداری گردید. در این مدت، شکل گیری، توسعه و تغییرات فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ نمونه‌برداری گردید. در این مدت، شکل گیری، توسعه و تغییرات فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ نمونه‌برداری گردید. در این مدت، شکل گیری، توسعه و تغییرات فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ نمونه‌برداری گردید. در این مدت، شکل گیری، توسعه و تغییرات فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ نمونه‌برداری گردید. در این مدت، شکل گیری، توسعه و تغییرات فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ نمونه‌برداری گردید. در این مدت، شکل گیری، توسعه و تغییرات فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ نمونه‌برداری گردید. در این مدت، شکل گیری، توسعه و تغییرات فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ نمونه‌برداری گردید. در این مدت، شکل گیری، توسعه و تغییرات فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ نمونه‌برداری گردید. در این مدت، شکل گیری، توسعه و تغییرات فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ نمونه‌برداری گردید. در این مدت، شکل گیری، توسعه و تغییرات فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ نمونه‌برداری گردید. در این مدت، شکل گیری، توسعه و تغییرات فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ نمونه‌برداری گردید. در این مدت، شکل گیری، توسعه و تغییرات فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ نمونه‌برداری گردید. در این مدت، شکل گیری، توسعه و تغییرات فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ نمونه‌برداری گردید. در این مدت، شکل گیری، توسعه و تغییرات فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ نمونه‌برداری گردید. در این مدت، شکل گیری، توسعه و تغییرات فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ نمونه‌برداری گردید. در این مدت، شکل گیری، توسعه و تغییرات فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ نمونه‌برداری گردید. در این مدت، شکل گیری، توسعه و تغییرات فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ نمونه‌برداری گردید. در این مدت، شکل گیری، توسعه و تغییرات فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ نمونه‌برداری گردید. در این مدت، شکل گیری، توسعه و تغییرات فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ نمونه‌برداری گردید. در این مدت، شکل گیری، توسعه و تغییرات فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ نمونه‌برداری گردید. در این مدت، شکل گیری، توسعه و تغییرات فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ نمونه‌برداری گردید. در این مدت، شکل گیری، توسعه و تغییرات فلزگری مس و آلبانی‌های آن در دوران پیش از تاریخ فلات ایران. از بی‌کاری‌های سنگ معدن کاری پیش از تاریخ N

Majidzadeh, 1979.)

استحصال مس و ریخته‌گری و تولید اشیاء فلزی

در کنار یافته‌های فلزگری تل ابلیس، شواهد متعددی از اشیاء فلزی و بقایای فلزگری متعلق به هزاره چهارم ق.م اشاره نمود (Thornton, 2009a). در این محوطه از بوته‌های سفالی روباز جهت استحصال استفاده می‌شده است و پس از پر کردن بوته با مالاکیت خرد شده، آن را در یک چاله در زمین گذاشته و با ذغال پوشانده و آتش را روشن می‌کردند. نتایج مطالعات بر روی نمونه‌های بوته‌ها نشان می‌دهد که در بعضی موارد حرارتی بیش از 1150°C استفاده شده و محیط استحصال در شرایط احیاء بوده است (Frame, 2004).

در کنار یافته‌های فلزگری تل ابلیس، شواهد متعددی از اشیاء فلزی و بقایای فلزگری متعلق به هزاره چهارم ق.م اشاره نمود (Thornton, 2009a). در این محوطه از بوته‌های سفالی روباز جهت استحصال استفاده می‌شده است و پس از پر کردن بوتهم با مالاکیت خرد شده، آن را در یک چاله در زمین گذاشته و با ذغال پوشانده و آتش را روشن می‌کردند. نتایج مطالعات بر روی نمونه‌های بوتهم‌ها نشان می‌دهد که در بعضی موارد حرارتی بیش از 1150°C استفاده شده و محیط استحصال در شرایط احیاء بوده است (Frame, 2004).
کاشان و نطنز مورد مطالعه و بررسی‌های مقدماتی قرار گرفتند. محدوده معدن کاری عصر مفرغ و شهره‌ایination (Stöllner et al., 2004) و محدوده قلعه گوشه متعلق به اواخر این قرن می‌باشد (Thornton, 2009a). بر اساس نتایج، محدوده اریسمان مرکز برنامه‌ریزی مس و نقره در حدود ۶۰۰۰ سال قبل بوده است. شواهد بین‌المللی میدانی‌ها و اشیاء تزئینی و کاربردی دیگر است. از سوی دیگر، فرآیند استحصال نقره با استفاده از روش قال‌گذاری (Cupellation) در این محدوده انجام می‌شده است (Vatandoust, 2004; Vatandoust et al., 2011; Chegini et al., 2000).

شکل ۳- ا- قطعاتی از بوته ذوب فلز متعاق به محوطه تل ابلیس کرمان (Dougherty et al., 1966)، ب- قطعات مختلف بوته استحصال و قالب جهت ریخته‌گری اشیاء متعلق به تپه قبرستان قزوین (Majidzadeh, 1979)، ج- طرح یک بوته قالچک ذوب فلز از محوطه تل ابلیس کرمان (Thornton, 2009a)، د- تصویر دو نمونه از بوته‌های ذوب مس از تپه قبرستان (Thornton, 2009a).

1. Cupellation
محوطه باستانی سیلک را نیز در زمینه تولید فلز اهمیت دارد. بلندی میزان و گستردگی تولید فلز در سیلک با ارسیمان قابل مقایسه نیست. سیلک را یاد کنید به عنوان یک شهر واقعی دانست که در آن استحصال و تولید مس و نقره/سرپ نیز در مقیاس کوچک انجام می‌شده است (Nezafati et al, 2006).

Figure 4- Right: copper smelting furnace, Arisman, ca. 3000 BCE (Thornton, 2009a). Left: a crucible discovered from Arisman (Courtesy: Archive of RCCCR).

از اولین مراحل استحصال در فلات ایران (و حتی در بعضی اشیاء خاصه شده از مس ازد) ارسنیک نقش مهمی در فلزگری مس ایفا کرده است، این عنصر به عنوان یک ماده قابل تخریب و نیز به عنوان یک وسیله نقلیه در حمل و نقل شهری و خودروهای کوچک مورد استفاده قرار می‌گرفت. در حین این استحصال، ارسنیک به عنوان یک عامل مهم در تولید آلیاژ‌های مس و سرب نقش اساسی ایفا می‌کرد. نتایج آنالیز نمونه‌های مختلف متعلق به دوره مس سنگی (حدود 4500 تا 3000 هزار سال ق.م) بیانگر استفاده از آلیاژ مس ارسنیکی در ناحیه خاور نزدیک (به خصوص ایران) است. در حقیقت ظهور آلیاژ مس ارسنیکی را می‌توان مرحله انتقال بین استحصال از مس ریختگی به آلیاژ برنز دانست. ظهور آلیاژ این اداده با استفاده از منابع مس استحصال مس از آنها صورت گرفت که موجب آلیاژ‌سازی تصادفی شده است. با ادامه این فرآیند، فلزگران باستانی احتمالاً متوجه تفاوت کیفیتی و ظاهر فلز استحصال شده می‌شوند و استفاده از منابع حاوی ارسنیک به شکل گسترده‌ای صورت می‌گیرد. بر این اساس، شاید بتوان گفت که اولین تلاش‌ها در زمینه آلیاژسازی در عصر این دوره انجام شده باشد.

آلیاژ مس ارسنیکی بوبه است (Thornton, 2010؛ طلا، 2003. بررسی‌ها نشان داده‌اند که کاهش مخاطر با استفاده از آلیاژ مس و سرب در عصر حاضر ممکن است با استفاده از منابع حاوی ارسنیک و سرب به‌دست آید. این آلیاژ مس و سرب به عنوان یک آلیاژ شیمیایی با میزان آرسنیک بیش از حد، در بخش‌های میزان کمتر از 2 درصد ارسنیک و رابطه میان آلیاژ مواد استفاده گرفته‌اند (Thornton, 2009a). در میزان ارسنیک بیش از 2 درصد در آلیاژ ای، این کوگران نیز روش جهت ساخت تمام آلیاژ مس ارسنیکی را مطرح می‌کنند (Coghlan, 1975).

1. Deoxidant
2 H. H. Coghlan
استحصال هیزمان سنگ معدن اکسیدی مس با زرنیخ سرخ (\(\text{As}_2\text{S}_3\)) یا زرنیخ سرخ (\(\text{As}_2\text{S}_3\)) یا زرنیخ سرخ (\(\text{As}_2\text{S}_3\)) و افزودن زرنیخ یا زرنیخ سرخ به مس مذاب.

شکل ۵- راست: تبر ساخته شده از مس ارسنیکی متعلق به دوره کالکولیتیک (مس سنگی) شوش I/II (مالکه هزاره چهارم ق. م. موزه لوور، Benoit, 2004). چپ: دو حلقه مسی متعلق به محوطه اریسمان (اریسمان بروششهداخ قلعه‌ها و میراث آثار تاریخی).

۴- ظهور و توسعه آلیاژ برنز

هزاره سوم ق. م. می‌توان آغاز مرحله جدیدی در فلزگری‌ها در فلات ایران دانست. این دوره با ظهور آلیاژی جدید در تولیدات فلزی متقارن است. واژه برنز به آلیاژ‌های مسی که از مس و دیگر فلزات به غیر از مس می‌شود گفته می‌شود (فرهنگ، ۱۳۷۹). اما در واژه‌نامه‌های باستان‌شناسی و آرکاولوژی (فلزگری کهن)، برنز به مفرغ مسی یا قلع (برنز قلعی) اطلاق می‌شود. در بعضی مواقع سرب نیز به این سیستم اضافه شده و سپس سیستم سربی (سرب-قلع) با دمای دوب پایینتر را تشکیل می‌دهد. افزودن سرب موجب افزایش درمان و عملیات ریخته‌گری لغزش در سرطان توده و به‌افزایش قلی در ریخته‌گری کمک می‌کند. همچنین با توجه به هزینه بالای استفاده از قلی، سرب یا جایگزینی مانند برای قلی، در دنبال باستان بوده است (Scott, 2002).

برنز را می‌توان اولین آلیاژ باقی مسی در چنین دوره قلی باعث مس با رویشی مختلف جهت بالایی بردن کیفیت مکانیکی و شیمیایی تولید می‌شود. اینکه مس ارسنیکی را با بید اولین آلیاژ مسی دانست تا حدی

1. C. P. Thornton
2. Speiss
صحیح است که این موضوع به مطالعه ذکر شده در بالا تعلیق یافته و استفاده از آلیاژهای مس-قلع در حدود 2000 سال به عنوان یکی از تکنیک‌های گیری توسعه و تغییرات فلزگری. در این دوران، فلزگران امکان تولید عمدی از آلیاژهای قلع با هزینه بالا و اولاب، چهارم ق م به منابع حاوی ارسنیک که در هزاره پنجم یافته بودند از این منابع نسبت به سنگ معدن‌های بدون ارسنیک بوده است. افزودن قلع به مس، موجب جذب‌سازی طرح‌های دسترسی به این خاصیت شده است. این مواد به‌طور کلی در ایران در دوران پیش از تاریخ فلزگری و مردم ایران در ناحیه‌ای از غرب ایران از منابع حاوی ارسنیک، کیفیت مناسب‌تر فلز و استحصال، جذب سازی به‌کارگیری آلیاژ در این دوران مشاهده شده است.

آلیاژ برنز در حدود هزاره سوم ق م در ایران غربی و بین النهرین شناخته شد، هرچند در دیگر نواحی ایران تا حدود هزاره هزار به بعد نمود است. اولین شواهد ظهور آلیاژ برنز (مس-قلع) شامل شاهد زمان اولین مس-قلع در حدود 3000 سال ق م زمانی به‌کارگیری آلیاژ برنز اولیه در ایران است و در سال 1300 ه ق.م. به تولید این آلیاژ در ایران اشاره نشده است. اولین نمونه تاریخی از آلیاژ برنز (مس-قلع) شناخته شده به‌طریق تعمیدی در ایران متعلق به غرب ایران است و به حدود 3000 سال ق.م. بازمی‌گردد. اولین نمونه تاریخی از آلیاژ برنز (مس-قلع) شناخته شده به‌طریق تعمیدی در ایران متعلق به غرب ایران است و به حدود 3000 سال ق.م. بازمی‌گردد. اولین نمونه تاریخی از آلیاژ برنز (مس-قلع) شناخته شده به‌طریق تعمیدی در ایران متعلق به غرب ایران است و به حدود 3000 سال ق.م. بازمی‌گردد. اولین نمونه تاریخی از آلیاژ برنز (مس-قلع) شناخته شده به‌طریق تعمیدی در ایران متعلق به غرب ایران است و به حدود 3000 سال ق.م. بازمی‌گردد. اولین نمونه تاریخی از آلیاژ برنز (مس-قلع) شناخته شده به‌طریق تعمیدی در ایران متعلق به غرب ایران است و به حدود 3000 سال ق.م. بازمی‌گردد. اولین نمونه تاریخی از آلیاژ برنز (مس-قلع) شناخته شده به‌طریق تعمیدی در ایران متعلق به غرب ایران است و به حدود 3000 سال ق.م. بازمی‌گردد. اولین نمونه تاریخی از آلیاژ برنز (مس-قلع) شناخته شده به‌طریق تعمیدی در ایران متعلق به غرب ایران است و به حدود 3000 سال ق.م. بازمی‌گردد. اولین نمونه تاریخی از آلیاژ برنز (مس-قلع) شناخته شده به‌طریق تعمیدی در ایران متعلق به غرب ایران است و به حدود 3000 سال ق.م. بازمی‌گردد. اولین نمونه تاریخی از آلیاژ برنز (مس-قلع) شناخته شده به‌طریق تعمیدی در ایران متعلق به غرب ایران است و به حدود 3000 سال ق.م. بازمی‌گردد. اولین نمونه تاریخی از آلیاژ برنز (مس-قلع) شناخته شده به‌طریق تعمیدی در ایران متعلق به غرب ایران است و به حدود 3000 سال ق.م. بازمی‌گردد. اولین نمونه تاریخی از آلیاژ برنز (مس-قلع) شناخته شده به‌طریق تعمیدی در ایران متعلق به غرب ایران است و به حدود 3000 سال ق.م. بازمی‌گردد. اولین نمونه تاریخی از آلیاژ برنز (مس-قلع) شناخته شده به‌طریق تعمیدی در ایران متعلق به غرب ایران است و به حدود 3000 سال ق.م. بازمی‌گردد. اولین نمونه تاریخی از آلیاژ برنز (مس-قلع) شناخته شده به‌طریق تعمیدی در ایران متعلق به غرب ایران است و به حدود 3000 سال ق.م. بازمی‌گردد. اولین نمونه تاریخی از آلیاژ برنز (مس-قلع) شناخته شده به‌طریق تعمیدی در ایران متعلق به غرب ایران است و به حدود 3000 سال Q.M. بازمی‌گردد. اولین نمونه تاریخی از آلیاژ برنز (مس-قلع) شناخته شده به‌طریق تعمیدی در ایران متعلق به غرب ایران است و به حدود 3000 سال Q.M. بازمی‌گردد. اولین نمونه تاریخی از آلیاژ برنز (مس-قلع) شناخته شده به‌طریق تعمیدی در ایران متعلق به غرب ایران است و به حدود 3000 سال Q.M. بازمی‌گردد. اولین نمونه تاریخی از آلیاژ برنز (مس-قلع) شناخته شده به‌طریق تعمیدی در ایران متعلق به غرب ایران است و به حدود 3000 سال Q.M. بازمی‌گردد. اولین نمونه Tاریخی از آلیاژ برنز (مس-قلع) شناخته شده به‌طریق Tعمیدی در ایران Mتعلق به غرب ایران است و به حدود 3000 سال Q.M. بازمی‌گردد. اولین نمونه Tاریخی از آلیاژ برنز (مس-قلع) شناخته شده به‌طریق Tعمیدی در ایران M.located in the western part of Iran (Moorey, 1982; Nezafati, 2006). From the earliest examples of bronze, one can trace back to the late fourth millennium BC (Thorton et al, 2004b). In the early centuries of the first millennium BC, bronze was used in Iran to produce various objects (Coghlan, 1975; Pigott, 2004; Oudbashi et al, 2015a).
مطالعات باستان‌شناختی دوره ۱۳، شماره ۱، بهار ۱۴۰۰

1. Co-Smelting

- دوب مخلوطی از مس و قلع فلزی استحصال شده همراه با هم، اضافه کردن کانی کاسیتریت (SnO₂) به مس منبب در بوته زیر پوستی از ذغال (اخمه کاسیتریت).
- استحصال سنگ معدن مس قلع مطمیع یا سنگ معدن حاوی هر دو فلز مس و قلع در ترکیب، استحصال مخلوط از کانی سنگ همراه با کاسیتریت (استحصال توام) ۱.
- پیازبایی و ذوب مجدد قطعات شکسته برنز.

در روش اول با مخلوط کرون قلع فلزی و سنگ فلزی و ذوب آنها همراه با یکدیگر، قلع به عنوان اکسیدردا عمل کرد و همچنین سنگ معدن را در فراوانی می‌توانسته‌گز از افزایش می‌دهد. در عین حال افزودن حدود ۵% قلع نقطه ذوب مس را از حدود ۶۸۸ °C (اکسیدی) و ۱۰۵ °C (افزودن ۱۰% / به ظرف، (Pigott et al, 2003a) استفاده از روش اول در تولید برنز در پیش از تاریخ ایران محتمل به نظر می‌رسد که در دیلیت انگه در زمان‌کشف و استفاده اولیه از برنز در مصر مفرغ، هنوز استحصال قلع از سنگ معدن می‌توانسته‌گز با توجه به نیاز به فرایند پیچیده جهت استحصال فلز از این کوانی امکان استحصال قلوع از این روش احتمالاً می‌توانست برنز به عنوان منبعی جهت ساخت برنز را به عنوان منبعی جهت ساخت برنز (Coghlan, 1975). در حقیقت، در اولین نمونه در دوره یا کوره مورفی کرون مجدداً ساخته شده است (Pigott et al, 2003; Pulak, 2004; Fleming, 2005; Nezafati et al, 2006b).

در روش دوم، استفاده از روش دوم در دوران باستان عمیقاً بوده است. این روش اضافه کردن و حفظ همچنین با استفاده از روش سوم (Nezafati, 2006; Oudbashi et al, 2016a; Oudbashi et al, 2017a) در حفظ شوایدی از تولید قلع فلزی در قلع اثر (Pigott et al, 2003) می‌توانسته‌گز با توجه به دلیل اینکه در زمان کشف و استفاده اولیه از برنز در مصر مفرغ، هنوز استحصال قلع از سنگ معدن اولیه در باید توجه ساخت آلیاژ برنز در پیش از تاریخ ایران محتمل است (Nezafati et al, 2006). اضافه کردن سنگ معدن قلع به سنگ معدن مس و استحصال آنها همراه با هم در بوته با کوره (روس-چیاره) می‌تواند به عملیات استحصال را تا حدود ۲۰۰ °C بازی بر ۱۰۵ °C (به همراه ترکیبی که موجب می‌شود تا زمان حسارت به جهت استحصال نیز کاهش یابد. به استحصال سنگ معدن به دو فلز در اینجا می‌تواند (به یکدیگر مربوط شکسته ۳) و همچنین به استحصال مخلوط سنگ معدن. (Nezafati, 2006). مورد استفاده قرار گرفته‌اند (a) با بهره‌گیری و با استاندارد کانی استانیت (CuSnFeS₁/₃) یا پیریت قلع را به عنوان منبعی جهت ساخت برنز مصرف کرده‌اند. با توجه به نیاز به کاهش پیچیده جهت استحصال فلز از این کانی امکان استحصال قلع به هنرگاهی از آن در دوران باستان بسیار غیرمحتمل به نظر می‌رسد (Coghlan, 1975). با این حال شوایدی از استحصال این کانی کرون جهت تولید سیلیست آلیاژ برنز در پیش از تاریخ ایران (برنسر) در استحصال باستان‌شناسی ده حسین در غرب ایران مشاهده شده است (Pigott et al, 2003). اضافه کردن سنگ معدن قلع به سنگ معدن مس و استحصال آنها همراه با هم در بوته با کوره (روس-چیاره) می‌تواند به عملیات استحصال را تا حدود ۲۰۰ °C بازی بر ۱۰۵ °C (به همراه ترکیبی که موجب می‌شود تا زمان حسارت به جهت استحصال نیز کاهش یابد. به استحصال سنگ معدن به دو فلز در اینجا می‌تواند (به یکدیگر مربوط شکسته ۳) و همچنین به استحصال مخلوط سنگ معدن. (Nezafati, 2006).

به طور کلی تعیین و شناسایی منابع قلع باستانی یکی از سوالات مهم در زمینه آغاز متالورژی برنز در دوران پیش از تاریخ فلات ایران: از به کارگیری مس تا شواهد تولید برنج (Maddin, 1977; Pigott et al, 2003a; Muhly, 1985).

به طور کل تغییر و شناسایی منابع قلع باستانی یکی از سوالات مهم در زمینه آغاز متالورژی برنز در دوران پیش از تاریخ فلات ایران: از به کارگیری مس تا شواهد تولید برنج (Maddin, 1977; Pigott et al, 2003a; Muhly, 1985).

به طور کل تغییر و شناسایی منابع قلع باستانی یکی از سوالات مهم در زمینه آغاز متالورژی برنز در دوران پیش از تاریخ فلات ایران: از به کارگیری مس تا شواهد تولید برنج (Maddin, 1977; Pigott et al, 2003a; Muhly, 1985).

 به طور کل تغییر و شناسایی منابع قلع باستانی یکی از سوالات مهم در زمینه آغاز متالورژی برنز در دوران پیش از تاریخ فلات ایران: از به کارگیری مس تا شواهد تولید برنج (Maddin, 1977; Pigott et al, 2003a; Muhly, 1985).

به طور کل تغییر و شناسایی منابع قلع باستانی یکی از سوالات مهم در زمینه آغاز متالورژی برنز در دوران پیش از تاریخ فلات ایران: از به کارگیری مس تا شواهد تولید برنج (Maddin, 1977; Pigott et al, 2003a; Muhly, 1985).

به طور کل تغییر و شناسایی منابع قلع باستانی یکی از سوالات مهم در زمینه آغاز متالورژی برنز در دوران پیش از تاریخ فلات ایران: از به کارگیری مس تا شواهد تولید برنج (Maddin, 1977; Pigott et al, 2003a; Muhly, 1985).

به طور کل تغییر و شناسایی منابع قلع باستانی یکی از سوالات مهم در زمینه آغاز متالورژی برنز در دوران پیش از تاریخ فلات ایران: از به کارگیری مس تا شواهد تولید برنج (Maddin, 1977; Pigott et al, 2003a; Muhly, 1985).

به طور کل تغییر و شناسایی منابع قلع باستانی یکی از سوالات مهم در زمینه آغاز متالورژی برنز در دوران پیش از تاریخ فلات ایران: از به کارگیری مس تا شواهد تولید برنج (Maddin, 1977; Pigott et al, 2003a; Muhly, 1985).

به طور کل تغییر و شناسایی منابع قلع باستانی یکی از سوالات مهم در زمینه آغاز متالورژی برنز در دوران پیش از تاریخ فلات ایران: از به کارگیری مس تا شواهد تولید برنج (Maddin, 1977; Pigott et al, 2003a; Muhly, 1985).

به طور کل تغییر و شناسایی منابع قلع باستانی یکی از سوالات مهم در زمینه آغاز متالورژی برنز در دوران پیش از تاریخ فلات ایران: از به کارگیری مس تا شواهد تولید برنج (Maddin, 1977; Pigott et al, 2003a; Muhly, 1985).

به طور کل تغییر و شناسایی منابع قلع باستانی یکی از سوالات مهم در زمینه آغاز متالورژی برنز در دوران پیش از تاریخ فلات ایران: از به کارگیری مس تا شواهد تولید برنج (Maddin, 1977; Pigott et al, 2003a; Muhly, 1985).

به طور کل تغییر و شناسایی منابع قلع باستانی یکی از سوالات مهم در زمینه آغاز متالورژی برنز در دوران پیش از تاریخ فلات ایران: از به کارگیری مس تا شواهد تولید برنج (Maddin, 1977; Pigott et al, 2003a; Muhly, 1985).

به طور کل تغییر و شناسایی منابع قلع باستانی یکی از سوالات مهم در زمینه آغاز متالورژی برنز در دوران پیش از تاریخ فلات ایران: از به کارگیری مس تا شواهد تولید برنج (Maddin, 1977; Pigott et al, 2003a; Muhly, 1985).

به طور کل تغییر و شناسایی منابع قلع باستانی یکی از سوالات مهم در زمینه آغاز متالورژی برنز در دوران پیش از تاریخ فلات ایران: از به کارگیری مس تا شواهد تولید برنج (Maddin, 1977; Pigott et al, 2003a; Muhly, 1985).

به طور کل تغییر و شناسایی منابع قلع باستانی یکی از سوالات مهم در زمینه آغاز متالورژی برنز در دوران پیش از تاریخ فلات ایران: از به کارگیری مس تا شواهد تولید برنج (Maddin, 1977; Pigott et al, 2003a; Muhly, 1985).

به طور کل تغییر و شناسایی منابع قلع باستانی یکی از سوالات مهم در زمینه آغاز متالورژی برنز در دوران پیش از تاریخ فلات ایران: از به کارگیری مس تا شواهد تولید برنج (Maddin, 1977; Pigott et al, 2003a; Muhly, 1985).

به طور کل تغییر و شناسایی منابع قلع باستانی یکی از سوالات مهم در زمینه آغاز متالورژی برنز در دوران پیش از تاریخ فلات ایران: از به کارگیری مس تا شواهد تولید برنج (Maddin, 1977; Pigott et al, 2003a; Muhly, 1985).

به طور کل تغییر و شناسایی منابع قلع باستانی یکی از سوالات مهم در زمینه آغاز متالورژی برنز در دوران پیش از تاریخ فلات ایران: از به کارگیری مس تا شواهد تولید برنج (Maddin, 1977; Pigott et al, 2003a; Muhly, 1985).

به طور کل تغییر و شناسایی منابع قلع باستانی یکی از سوالات مهم در زمینه آغاز متالورژی برنز در دوران پیش از تاریخ فلات ایران: از به کارگیری مس T

Figure 6- a- the spearhead discovered from a grave of Kalleh Nisar, Push-t-i Kuh, Luristan. b- a vessel from Kalleh Nisar, c- two pins discovered from Bani Surmeh Bronze Age site, Luristan. Chemical analysis proved using tin bronze for production of these objects in early third millennium BC (Begemann et al, 2008: 53, Pl. 6).

1 P. R. S. Moorey
مطالعات جدید انجام شده در ناحیه ده حسین در زاگرس میانی نیز بیانگر وجود منابع قلع و مس در کنار یکدیگر است. از سوی دیگر نتایج پژوهش در این ناحیه نشان می‌دهد که این منبع احتمالاً از عصر مفرغ تا عصر اهن جهت تولید برنز به‌ویژه در ناحیه لرستان مورد بهره‌برداری قرار می‌گرفته است (Nezafati et al., 2006b; Nezafati, 2006).

همانطور که ذکر شد، علیرغم ظهور برنز در غرب ایران (لرستان) در 3000 ق.م، اسکوپ تولید برنز از عصر مفرغ تا عصر آهن جهت تولید برنز به‌ویژه در نواحی مختلف فلات ایران را باز می‌گیرد. البته این موضوع علی‌رغم ظهور برنز در غرب ایران (لرسوتان) در 3000 ق.م، اسکوپ تولید برنز از عصر مفرغ تا عصر آهن جهت تولید برنز به‌ویژه در نواحی مختلف فلات ایران را باز می‌گیرد.

مطالعات باستان‌شناسی و فلزگری انجام شده بر روی محوطه‌های عصر مفرغ در ناحیه لرستان بیانگر استفاده از آلیاژ برنز اسکوپ. بخوشی زیادی از این اشیاء از درون قبرستانهای عصر مفرغ کشف شده‌اند. مطالعات انجام شده بر روی نمونه‌های این اشیاء از قبرستانهای عصر مفرغ اولیه و ابتدای عصر مفرغ اولیه و میانی. در ناحیه چهارکوه، لرستان مانند کوه ساسار، بینی سرمه، ویکود، دارود و گل گلبوی نشوان ده‌نوده سواخت اشویاء بنا بر برنز و میوزان قلع در نمونه‌های مطالعه شده، این محتوای آلیاژ برنز مشاهده شده است (Begemann et al., 2008; Fleming et al., 2005).

نسبت مطالعات‌های آلیاژ برنز اسکوپ به عصر مفرغ اولیه و میانی در نواحی مختلف عصر مفرغ ناحیه غرب ایران تنوع ترکیب فلز بر اساس مطالعات آمواری شامل مواد مورد استفاده در این محتوای آلیاژ برنز اسکوپ بسیار بوده و میوزان قلع در نمونه‌های مطالعه شده مشاهده شده است (Begemann et al., 2008; Fleming et al., 2005). در ناحیه غرب ایران، استفاده از آلیاژ برنز به خصوص در شمال، غرب و شمال غرب ایران معمول بوده و مقادیر قابل توجهی از آلیاژ برنز در محوطه‌های مختلف عصر اهن این مناطق به‌ویژه در شمال و جنوب غربی ایران مشاهده شده است (Oudbashi et al., 2016a). نتایج مطالعات به روایت آشیانه‌های متنوعی در روزی‌های این محوطه‌های باستانی نشان می‌دهد که استفاده از آلیاژ برنز قلعی در تاریکی آلیاژ برنز و ابزارهای و فلزی از محوطه‌های مس-مس-ارسینیک-قلع (الیاژ چندجیزی) به عنوان مواد مورد استفاده در تولید آشیانه‌های باستانی است (Moorey, 1982).

با اغاز عصر اهن در حدود 1500 ق.م، استفاده از آلیاژ برنز ادامه یافت. برنز را می‌توان آلبوم معمول در ساخت استخراج برنزی و کاربردی در عصر اهن فلات ایران (50-15 ق.م) دانست (Moorey, 1982). با توجه به نتایج مطالعات باستان‌شناسی استفاده از آلیاژ برنز به‌خصوص در شمال، غرب و شمال غرب ایران معمول بوده و مقادیر قابل توجهی از آلیاژ برنز در محوطه‌های مختلف عصر اهن این مناطق به‌ویژه در شمال و جنوب غربی ایران مشاهده شده است (Haerinck, 1988). کاوش‌های انجام شده در محوطه باستانی مارلیک چون مکتومی و زیرک مجموعه گرگی از آثار باستانی از دوران عصر اهن شد. این اشیاء برنزی در کنار نشانه‌های طلا و نقره و نیز سفال‌های تزئینی در کنار اجسام قرار داده شده بودند. این اشیاء برنزی این
مجموعه شامل اشیایی مانند ظروف لوله‌دار، مجسمه‌های حیوانات، شمشیر، نخ و ... هستند (نگهبان، 1378). مطالعات آزمایشگاهی نسبت به روند اسیدی‌های به دست آمده از گورستان عصر آهن مارلیک انجام شده است (Vandoust-Haghgihigh, 1977; Tylecote, 1972; Oudbashi et al, 2015a). نتایج این آزمایش‌ها نشان‌دهنده است که در برخی نمونه‌ها میزان عناصر مانند ارسینیک و سرب بیش از یک درصد وزنی گزارش شده است که نشان می‌دهد آلیاژ اصلی مواد استفاده در تولید اشیاء مکشوفه از گورستان مارلیک آلیاژی با جزیی برنز قلعی بوده است (Vandoust-Haghgihigh, 1977; Vandoust-Haghgihigh et al, 2015a) و نتیجه این مورد و تولید اشیاء متنوع با استفاده از آلیاژ برنز قلعی می‌باشد.

شکل 7- راست: یکی از ظروف برنزی لوله‌دار مکشوفه از مارلیک که حاوی نقش‌های برجسته چند شیر است (نگهبان، 1378). جلد: یکی از ظروف برنزی کشف شده از محوطه عصر آهن حسنلو (عکس از محسن چاره‌ساز).

در شمال غرب ایران نیز در عصر آهن، شواهد بسیاری از کواربرد برنوز در سواخت اشیاء تزیینی و آبی‌نی مشاهده شده است. برای مثال در کاوش‌های محوطه عصر آهن حسنلو در جنوب دریاچه ارومیه، بیش از 2000 صحنه برنزی و مسی به دست آمده است. بسیاری از این اشیاء به روش‌های مختلف تزیین شده‌اند. از سوی دیگر، اشیاء دوکلاژی از متعددی نیز در این مجموعه کشف شده است که با استفاده از برنز و آهن ساخته شده است (Pigott, 1990; Thornton et al, 2011).

یکی از نواحی مهم در فلزگری عصر آهن در ایران، ناحیه جغرافیایی لرستان است. البته این ناحیه جغرافیایی بیش از انی دوست به از نظرگاه تجربه فلزگری بسیار مهم بوده است. مطالعات انجام شده در نواحی مختلف لرستان در محوطه‌های بیش از عصر آهن نیز باقی مانده و به دست آمده است (Moorey, 1969). لرستان از دیدگاه جغرافیایی و در متوسط باستان‌شناسی ناحیه مرکزی غرب فلات ایران (زاکرس مرکزی) بوده و به دو بخش پیشکوه (پایام امروز) و پیشکوه (لرستان امروزی) تقسیم می‌گردد.

1. Bi-metallic
مطالعات باستان‌شناسی، جلد 13، شماره 1، بهار 1400 / 155

مجموعه بزرگ آثار برنزی به دست آمده از این ناحیه به برنزهای لرستان معروف است. این اصطلاح به مجموعه‌ای از آثار برنزی تزیینی با سبکی خاص و محلی منسوب می‌شود که متعلق به محدوده زمانی عصر آهن ایران (حدود 1300 تا 650 پی. م.) هستند (2004; 2005). کشف آثار برنزی عصر آهن در لرستان بیشتر حاوی مجموعه‌ای از فعالیت‌های غیرعلمی و قاچاق از محوطه‌های دوره ایون اصوت‌لاح لرستان است. این مجموعه بزرگ از اشیاء برنزی تزیینی با سبکی خاص و محلی مربوط به دوره‌های آهنی (حدود 1300 تا 650 پی. م.) است. کشف آثار برنزی عصر آهن در لرستان بیشتر حاوی مجموعه‌ای از فعالیت‌های غیرعلمی و قاچاق از محوطه‌های دوره ایون اصوت‌لاح لرستان است. این مجموعه بزرگ از اشیاء برنزی تزیینی با سبکی خاص و محلی مربوط به دوره‌های آهنی (حدود 1300 تا 650 پی. م.) است. کشف آثار برنزی عصر آهن در لرستان بیشتر حاوی مجموعه‌ای از فعالیت‌های غیرعلمی و قاچاق از محوطه‌های دوره ایون اصوت‌لاح لرستان است. این مجموعه بزرگ از اشیاء برنزی تزیینی با سبکی خاص و محلی مربوط به دوره‌های آهنی (حدود 1300 تا 650 پی. م.) است. کشف آثار برنزی عصر آهن در لرستان بیشتر حاوی مجموعه‌ای از فعالیت‌های غیرعلمی و قاچاق از محوطه‌های دوره ایون اصوت‌لاح لرستان است. این مجموعه بزرگ از اشیاء برنزی تزیینی با سبکی خاص و محلی مربوط به دوره‌های آهنی (حدود 1300 تا 650 پی. م.) است. کشف آثار برنزی عصر آهن در لرستان بیشتر حاوی مجموعه‌ای از فعالیت‌های غیرعلمی و قاچاق از محوطه‌های دوره ایون اصوت‌لاح لرستان است. این مجموعه بزرگ از اشیاء برنزی تزیینی با سبکی خاص و محلی مربوط به دوره‌های آهنی (حدود 1300 تا 650 پی. م.) است. کشف آثار برنزی عصر آهن در لرستان بیشتر حاوی مجموعه‌ای از فعالیت‌های غیرعلمی و قاچاق از محوطه‌های دوره ایون اصوت‌لاح لرستان است. این مجموعه بزرگ از اشیاء برنزی تزیینی با سبکی خاص و محلی مربوط به دوره‌های آهنی (حدود 1300 تا 650 پی. م.) است. کشف آثار برنزی عصر آهن در لرستان بیشتر حاوی مجموعه‌ای از فعالیت‌های غیرعلمی و قاچاق از محوطه‌های دوره ایون اصوت‌لاح لرستان است. این مجموعه بزرگ از اشیاء برنزی تزیینی با سبکی خاص و محلی مربوط به دوره‌های آهنی (حدود 1300 تا 650 پی. م.) است. کشف آثار برنزی عصر آهن در لرستان بیشتر حاوی مجموعه‌ای از فعالیت‌های غیرعلمی و قاچاق از محوطه‌های دوره ایون اصوت‌لاح لرستان است. این مجموعه بزرگ از اشیاء برنزی تزیینی با سبکی خاص و محلی مربوط به دوره‌های آهنی (حدود 1300 تا 650 پی. م.) است. کشف آثار برنزی عصر آهن در لرستان بیشتر حاوی مجموعه‌ای از فعالیت‌های غیرعلمی و قاچاق از محوطه‌های دوره ایون اصوت‌لاح لرستان است. این مجموعه بزرگ از اشیاء برنزی تزیینی با سبکی خاص و محلی مربوط به دوره‌های آهنی (حدود 1300 تا 650 پی. م.) است. کشف آثار برنزی عصر آهن در لرستان بیشتر حاوی مجموعه‌ای از فعالیت‌های غیرعلمی و قاچاق از محوطه‌های دوره ایون اصوت‌لاح لرستان است. این مجموعه بزرگ از اشیاء برنزی تزیینی با سبکی خاص و محلی مربوط به دوره‌های آهنی (حدود 1300 تا 650 پی. م.) است. کشف آثار برنزی عصر آهن در لرستان بیشتر حاوی مجموعه‌ای از فعالیت‌های غیرعلمی و قاچاق از محوطه‌های دوره ایون اصوت‌لاح لرستان است. این مجموعه بزرگ از اشیاء برنزی تزیینی با سبکی خاص و محلی مربوط به دوره‌های آهنی (حدود 1300 تا 650 پی. م.) است. کشف آثار برنزی عصر آهن در لرستان بیشتر حاوی مجموعه‌ای از فعالیت‌های غیرعلمی و قاچاق از محوطه‌های دوره ایون اصوت‌لاح لرستان است. این مجموعه بزرگ از اشیاء برنزی تزیینی با سبکی خاص و محلی مربوط به دوره‌های آهنی (حدود 1300 تا 650 پی. م.) است. کشف آثار برنزی عصر آهن در لرستان بیشتر حاوی مجموعه‌ای از فعالیت‌های غیرعلمی و قاچاق از محوطه‌های دوره ایون اصوت‌لاح لرستان است. این مجموعه BAMI نام‌گذاری شده که به این ناحیه در جنوب خاوری ایران و در نزدیکی شهر لرستان متکی می‌شود. این ناحیه به دست آمده از این ناحیه بوه برنزهوای لرستان معروض با محدوده زمانی عصر آهن در لرستان بیشتر حاوی مجموعه‌ای از فعالیت‌های غیرعلمی و قاچاق از محوطه‌های دوره ایون اصوت‌لاح لرستان است. این مجموعه بزرگ از اشیاء برنزی تزیینی با سبکی خاص و محلی مربوط به دوره‌های آهنی (حدود 1300 تا 650 پی. م.) است. کشف آثار برنزی عصر آهن در لرستان بیشتر حاوی مجموعه‌ای از فعالیت‌های غیرعلمی و قاچاق از محوطه‌های دوره ایون اصوت‌لاح لرستان است. این مجموعه بزرگ از اشیاء برنزی T. Louis Vanden Berghe
فلزگری، توسعه و تحولات فلزگری مس و آلیاژهای آن در دوران پیش از تاریخ فلات ایران: از بازویی مس تا شواهد تولید برنج

قلع تركیب نباتی در نگاه جدیدی به لرستان در موزه آشمولین نیز این مورد به‌خوبی به جشیم می‌خورد که در صفحه قلع به عنوان عنصر اصلی آلیاژهای در نمونه‌ها متغیر بوده و انگش مشخصی را نشان نمی‌دهد (Moorey, 1969). در عین حال، عنصر دیگری نیز به عنوان آلیاژ‌های ناپاک‌شان و در حد فرعی و کمیاب در این آشپزخانه مذکره می‌شود که شامل، سرب، نیکل، آلیاژ، مس و روی هستند. این عنصر در میزان نسبتاً بسیار عمدتاً به‌طور کلی آنالیز شده‌اند. در عین حال عناصر دیگری نیز به عنوان آلیاژ‌ساز یا ناخالصی در حد کمیاب مشاهده شده‌اند که شامل، ارسنیک، آهن، نقره و روی هستند. آزمایش‌های انجام شده بر روی شیوه‌ای که شایع می‌باشد، معلوم می‌گردد که انواع آلیاژ‌های مختلف قلم در نمونه‌های مختلف است. در عین حال عنصر دیگری مانند ارسنیک، آلیاژ، نیکل و سرب نیز به عنوان آلیاژ‌ساز در نمونه‌های مختلف است. در عین حال عنصر دیگری مانند ارسنیک، آلیاژ، نیکل و سرب نیز به عنوان آلیاژ‌ساز در نمونه‌های مختلف است. در عین حال عنصر دیگری مانند ارسنیک، آلیاژ، نیکل و سرب نیز به عنوان آلیاژ‌ساز در نمونه‌های مختلف است.

شکل 8- تعدادی از اشیاء برنزی متعلق به مجموعه برنزهای لرستان موزه فلک‌الافلاک خرم‌آباد. تاریخ‌های آن از تاریخ‌های محوطه مسکن‌ها در کشور ایران کسب کرده‌اند (عکس‌ها از امید عودباشی، مهدی ملک‌زاده و آرشیو موزه فلک الافلاک).

Figure 8- Some bronze objects from the well-known collection of Luristan Bronzes, Falak-ol-Aflak museum, Khorramabad. The spouted vessel is discovered from Sangtarashan site and the provenance of others is unknown (Courtesy: Omid Oudbashi, Mehrdad Malekzadeh and Archive of Falak-ol-Aflak museum).

یکی از جدیدترین مطالعات و کاوش‌های باستان‌شناسی در اینجا لرستان مربوط به محوطه باستانی ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این محوطه باستانی در ۲۵ کیلومتری جنوب شهر قزوین در تانزان قدیمی‌ترین محوطه‌های فلک‌الافلاک ساغتن‌رانی است. این م合わ...
سبک برنزهای لرستان از این محوطه به دست آمده اسوت (Oudbashi et al, 2013) نتیجه جهت ساخت ظروف بر اساس یک سیستم دو جزیی بوده و نتایج آزمایش بور روی تعدادی از اشیاء محوطه سنگتراشان نشان می‌دهد که اشیاء از آلیاژ برنوز قلعوی سواخته شده‌اند. در حقیقت فرایند آلیاژسازی در این ناحیه جهت ساخت ظروف بر پایه یک سیستم دو جزیی بوده و تنها از قلع بوه عنوان عنصر اصلی آلیاژسازی استفاده شده است و دیگر عناصر را نیز می‌توان به عنوان ناخالصی موجود در تركیب برشمرد. در واقع میزان قلع در این نمونه نیز مانند نمونه‌های دیگر متعلق به میزان قلع آزمایش‌شده به سیستم تحت کنترل فلزگرایی است. در تحقیق‌های انجام شده بر روی برنزهای لرستان تأیید گردیده است که در این نمونه‌ها میزان قلع نیز مانند نمونه‌های دیگر متعلق به میزان قلع آزمایش‌شده به سیستم تحت کنترل فلزگرایی است، ولی در حالتی که متریک فلزگرایی بطور کلی پایین است، می‌توان به استفاده از روش‌های غیرکنترلی ذکر شده در استحصال توام سنگ معدن مس اشاره داشت. در گزارش‌های مربوط به بافت و جزئیات فلزگرایی به دست آمده است که بیش از حد، میزان قلع در این نمونه‌ها نیز بطور کلی پایین است و نشان می‌دهد که میزان قلع آزمایش‌شده به سیستم تحت کنترل فلزگرایی است. در حالتی که متریک فلزگرایی بطور کلی پایین است، می‌توان به استفاده از روش‌های غیرکنترلی ذکر شده در استحصال توام سنگ معدن مس اشاره داشت. در گزارش‌های مربوط به بافت و جزئیات فلزگرایی به دست آمده است که بیش از حد، میزان قلع در این نمونه‌ها نیز بطور کلی پایین است و نشان می‌دهد که میزان قلع آزمایش‌شده به سیستم تحت کنترل فلزگرایی است.

5- برنج: نفوذی جدید یا آلیاژ انتقالی؟

در سیاست‌های نواحی دنیا برنج به عنوان آلیاژی نسبتاً جدید شناخته می‌شود و اسپری می‌شود. در درآمدی انجام شده با توجه به میزان روی در آنها می‌توان به احتمال تولید آلیاژ برنج با توجه به میزان روی در آنها می‌توان به

شکل‌گیری، تولید و انواع فلزگرایی برنج در ایران

پیش از تاریخ فلزگرایی مس، ساخت و تولید بیش از 1500 سال قبلاً با توجه به سیاست‌های اروپایی و مستقل شد.

1. آغاز استفاده از مس زرد جهت ساخت و تولید اشیاء کوچک و تزیینی که حد شامل دو مرحله است.

2. استحصال مس از سنگ معدن شامل سنگ معدن کاربردی و زیبری.

3. تولید آلیاژ برنج (مس و قلع) جهت تولید اشیاء فلزی که ابتدا به صورت اتفاقی و در دهه‌های اولین استفاده از استحصال توانسته‌اند، مس و قلع را به صورت ساختارهای کردنی انجام می‌دهند.

4. اولین شواهد استحصال استفاده از آلیاژ برنج در ایران به صورت اتفاقی به تعداد رخ داده است.

بافت و نتیجه‌گیری

ایران سرزمینی مهمی در مطالعات باستان‌شناسی است و در حدود 150 سال گذشته مورد توجه بسیاری از باستان‌شناسان نیز به‌شکل مختلف و متفاوت در حوزه مطالعات باستان‌شناسی و باستان‌سنجی بوده است. در حقیقت، فلات ایران یکی از نواحی پیشرو در زمینه‌های مختلف تاریخ فنون و تولید مواد در دوران باستان بوده است. مطالعات و مقالات متغیرات، توسعه و رونق جدید با خواص مختلف این مطالعات در زمینه فلزگرایی کهن و کشف مطالعاتی از همکاری‌های باستان‌شناسی است.

158/158
محوطه‌های این دوره و نیاز به کاوش‌های باستان‌شناسی گسترده در این دوره زمانی، موجب شده است تا نمونه‌های متنوع اشیاء فلزی دوره نوسنگی در دسترس نباشند. از سوی دیگر، تناوب در پیشرفت موارد معدن، مطالعات فنی شامل منالوگرافی و شناسایی ماهیت شیمیایی اشیاء بر روی نمونه‌های اولیه انجام شده است که خود موجب شده تا دانش فلزی در دوره نوسنگی بسیار محدود بوده و نیاز به مطالعات گسترده‌تر در حوزه باستان‌شناسی و آرکیولوجی به شدت احساس می‌گردد.

شکل 9- روند توسعه و شکل‌گیری بیده‌های فلزگری مس و آلیاژها این در پیش از تاریخ فلات ایران.

Figure 9- A schematic diagram showing the formation and development of copper base metallurgical processes in prehistory of the Iranian Plateau.

از سوی دیگر با گسترش فلزگری مس در هزاره پنجم و چهارم ق.م، شاهد استحصال مس از سنگ معدن‌های اکسیدی (مانند مالاکیت) و سولفیدی (مانند کالکوست و کالکوپیریت) هستیم. امکان استحصال مس از سنگ معدن موجب شد تا فلزگران در ایران، منابع گسترده مس را جایگزین منابع محدود مس آزاد نمایند. با توجه به فراوانی منابع مس در فلات ایران، این امر موجب سرعت مس و استحصال فلزگری مس و استحصال گسترده آن شد. البته باید خاطرنشان نمود که استحصال فلز از سنگ معدن با رشد دانش فلزی در فلات ایران همواره است. در حقیقت، امکان ایجاد شرایط حرارتی مناسب جهت استحصال مس به شکل محدود در بوته‌های سفالی و بهصورت گسترده در کوره به دلیل امکان تولید حرارت مناسب بوده است. با گذر زمان، در دوره مس‌سنگی شاهد شکل‌گیری مراکز مهم فلزگری و در حقیقت تجارت احتالی فلز هستیم. محوطه‌های ماند شهداد کرمان، بی‌قرشات قروین، سیلک، شوش، ارسیمان و مواردی از این دست، مراکز مهم فلزگری در دوره مس‌سنگی تا اواخر عصر مفرغ هستند. این مراکز مهم در مورد برخی از این محوطه‌ها نزدیکی‌ای به منابع شناخته‌شده مس در ایران است. منابع مس در فلات مرکزی ایران را می‌توان شامل منابع ناحیه کرمان امروزی و منابع استفاده شده در دوران باستان در حاشیه کوره لوط ماند معادن نخلک تال مسی اتارک و تکنیک گرمایش مسی. نتایج مطالعات بر روی اشیاء فلزی دوره مس‌سنگی و عصر مفرغ و نژ
شکل‌گیری، توسعه و تحولات فلزگری مس و آلیاژهای آن در دوران پیش از تاریخ فلات ایران: از بکارگیری مس تا شواهید تولید برنج

معادن و منابع شناخت‌شهره در ایران بینانگر وجود میزان قابل توجه ارسنیک هم در آن‌ها و هم در سنج معدن است. در حقیقت، منابع مس استفاده شده در دوران پباسان حاوی مواد غیر قابل توجهی ارسنیک بوده و این موضوع موجب شده تا انشای مسی این دوره نیز حاوی میزان قابل توجهی از این عنصر باشد. در واقع، شواهد بینانگر استحصال تولید ترکیبات مس و ارسنیک و تولید اتفاقی آلیاژ مس ارسنیکی بوده است که خواص مناسبی از مس، منابع جدید مس در اواخر هزاره چهارم و اوائلا هزاره سوم قوم موجب شده تا نام برنز یا مفرغ با عنوان آلیاژی جدید فلزگری ایران ظاهر گردد. اولین نمونه‌های برنز را می‌توان در هزاره چهارم پم ماه‌های نمود. احتمالاً آشنا بود که میزان قابل توجهی از آلیاژی برنزی که از دهنده استحصال به ولتاژ مسی تولید می‌شود.

نکته مهم در موضوع تولید برنز قلعی، منابع قلع مورد استفاده در دوران پیش از تاریخ است. در حین سپاری از محققان معتقدند که ایران، حاصل قلع مسی ایجادی از شناختی که این مسئله مطرح است، بر اساس اندازه‌گیری های شیمیایی، میزان ارسنیک موجود در معدن مس، استفاده از آلیاژی برنزی هنگام ایجاد قلع در ایران است. برخی از این نتایج توسط (SnO) موجود در حاشیه زاگرس مرکزی و لرستان امروزی، بیانگر کاربردی است که این آلیاژ در برنز یافته است. هر چند استفاده از برنز در دوران هزاره سوم به شکلی محدود و غیر اجتماعی بوده و تولید برنز در هزاره اول که به عناصر آهن و برنز می‌باشد، با توجه به مطالعات انجام شده می‌توان گفت که مطالعات مورد نیاز در حوزه‌های باستان‌شناسی، آرکیوپتولورژی، آنالیزهای شیمیایی، زمین‌شناسی و
منابع

اسلامی، محمدتقی (۱۳۸۷-۱۳۸۴)، فرهنگ ساسانی، تهران، نشر نگارستان مطالعات باستانی.

«بطوله‌نامه حامی مولوی در دوره سیروان خسرو»، مجله منابع تاریخ، سال ۱۳۸۶، شماره ۳۷.

کارشناسی ارشد باستان‌شناسی (۱۳۸۶)، دانشگاه تهران.

درمانی، مهرداد و امیری، علی (۱۳۸۹)، مطالعات ارکومتالورژی در حوزه کنار هشتی، مطالعات باستانی، سال ۱۳۸۹، شماره ۲.

از همکاران و دوستان گرامی آقایان: دکتر علی‌اصفهانی (۱۳۸۶)، مطالعات ارکومتالورژی در حوزه کنار هشتی، مطالعات باستانی، سال ۱۳۸۶، شماره ۳.

آقایان، به نظر رایج، برایان، ژان گیورگی (۱۳۸۷)، مطالعات ارکومتالورژی در حوزه کنار هشتی، مطالعات باستانی، سال ۱۳۸۷، شماره ۴.

آقایان، به نظر رایج، برایان، ژان گیورگی (۱۳۸۷)، مطالعات ارکومتالورژی در حوزه کنار هشتی، مطالعات باستانی، سال ۱۳۸۷، شماره ۴.

آقایان، به نظر رایج، برایان، ژان گیورگی (۱۳۸۷)، مطالعات ارکومتالورژی در حوزه کنار هشتی، مطالعات باستانی، سال ۱۳۸۷، شماره ۴.

Moorey, P. R. S. 1969. Prehistoric Copper and Bronze Metallurgy in Western Iran (With Special Reference to Luristan). Iran, 7: 131-153.

Nezafati N. 2006. Au-Sn-W-Cu-Mineralization in the Astaneh-Sarband Area, West Central Iran, including a comparison of the ores with ancient bronze artifacts from Western Asia. PhD Dissertation, Der Geowissenschaftlichen Fakultät, Der Eberhard-Karls-Universität Tübingen, Germany, Unpublished.

Palizvan. S. 2017. Study of the Manufacturing Methods in Some of the Bronze Objects of Iron Age in the Dia Ardizi of Moormi, Luristan. MSc. Art University of Isfahan [in Persian].

